BER analysis of space-time diversity in CDMA systems over frequency-selective fading channels
نویسندگان
چکیده
The performance of direct-sequence code division multiple access (DS-CDMA) using space– time spreading system, over frequency-selective fading channels, is investigated. The underlying transmit diversity scheme, previously introduced in the literature, is based on two transmit and one receive antenna. It was shown that when employed in flat fast-fading channels, the received signal quality can be improved by utilising the spatial and temporal diversities at the receiver side. We study the problem of multiuser interference in asynchronous CDMA systems that employ transmit/receive diversity using space– time spreading. To overcome the effects of interference, a decorrelator detector is used at the base station. Considering binary phase-shift keying transmission, we analyse the system performance in terms of its probability of bit error. In particular, we derive the probability of error over frequency-selective Rayleigh fading channels for both fast and slow-fading channels. For the fast-fading channel, both simulations and analytical results show that the full system diversity is achieved. On the other hand, when considering a slowfading channel, we show that the scheme reduces to conventional space–time spreading schemes where the diversity order is half of that of fast-fading.
منابع مشابه
Single-Carrier Frequency-Domain Equalization for Orthogonal STBC over Frequency-Selective MIMO-PLC channels
In this paper we propose a new space diversity scheme for broadband PLC systems using orthogonal space-time block coding (OSTBC) transmission combined with single-carrier frequency-domain equalization (SC-FDE). To apply this diversity technique to PLC channels, we first propose a new technique for combining SC-FDE with OSTBCs applicable to all dispersive multipath channels impaired by impulsive...
متن کاملCooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel
In this paper, a cooperative algorithm to improve the orthogonal space-timefrequency block codes (OSTFBC) in frequency selective channels for 2*1, 2*2, 4*1, 4*2 MIMO-OFDM systems, is presented. The algorithm of three node, a source node, a relay node and a destination node is formed, and is implemented in two stages. During the first stage, the destination and the relay antennas receive the sym...
متن کاملBroadband MC DS-CDMA Using Space-Time and Frequency-Domain Spreading
In this contribution multicarrier direct-sequence codedivision multiple-access (MC DS-CDMA) using space-time spreading (STS) assisted transmit diversity and frequency-domain (F-domain) spreading is investigated in the context of broadband communications over frequency-selective Rayleigh fading channels. We consider the attainable capacity extension of broadband MC DS-CDMA with the advent of usi...
متن کاملBit Error Performance for Asynchronous Ds Cdma Systems Over Multipath Rayleigh Fading Channels (RESEARCH NOTE)
In recent years, there has been considerable interest in the use of CDMA in mobile communications. Bit error rate is one of the most important parameters in the evaluation of CDMA systems. In this paper, we develop a technique to find an accurate approximation to the probability of bit error for asynchronous direct–sequence code division multiple–access (DS/CDMA) systems by modeling the multipl...
متن کاملAdaptive Space-Time-Spreading-Assisted Wideband CDMA Systems Communicating over Dispersive Nakagami-m Fading Channels
In this contribution, the performance of wideband code-division multiple-access (W-CDMA) systems using space-timespreading(STS-) based transmit diversity is investigated, when frequency-selective Nakagami-m fading channels, multiuser interference, and background noise are considered. The analysis and numerical results suggest that the achievable diversity order is the product of the frequency-s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IET Communications
دوره 3 شماره
صفحات -
تاریخ انتشار 2009